How plants decide on a pattern for a new leaf

When a multicellular organism develops, each cell needs to know its place in relation to all other cells. This means cells need to communicate amongst themselves to create the patterns from which different tissue and cell types arise. In the case of animals, we know about the signals and mechanisms which drive these patterning processes.

With plants it's different, because multicellular plants have evolved independently of multicellular animals. Professor Marja Timmermans of Tübingen's Center for Plant Molecular Biology has worked with colleagues at Cold Spring Harbor Laboratories in New York to discover that cell communication during patterning in plants is carried out via a unique and intricate mechanism. Plants use "small RNAs" as mobile signals. Small RNAs were previously known for their role in defense mechanisms against herbivores or disease pathogens, but as the new study shows also underlie that cells in the leaf take on the correct identity in space and time. The results of this reasearch have been published in the latest issue of Developmental Cell.

"Research on pattern formation in organisms has a rich history in Tübingen," Marja Timmermans points out. In the early seventies, Professors Hans Meinhardt and Alfred Gierer, then at the Max Planck Institute for Virus Research, worked out basic principles for how pattern can arise in a population of cells, and Professor Christiane Nüsslein-Volhard, Director at the Max Planck Institute for Developmental Biology, was rewarded the Nobel prize for her work on the genetic control of patterning in the egg of the fruit fly Drosophila in 1995.

Click here to read full article

Share

Please log in to post comments